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ABSTRACT

(—)-salviasperanol
The achiral enynone shown cyclized to produce a tricyclic dienone that was converted in six steps to ( —)-salviasperanol.
More than five hundred species 8lviaare found world- modification of our cyclialkylation strategy that facilitates

wide, and they have been widely used as folk medicines sincethe first total synthesis of (—)-salviasperanol {3).
ancient times. The two subgenera of Salvigalvia and
Sclarea, contain mostly rearranged abietane-type diterpene
such as barbatusdl)?® salvicanol 2),* salviasperanol3),>®
and komaroviquinonedf” (Scheme 1). We have synthesized
several icetexane diterpenoids by using an intramolecular
Friedel—Crafts, or cyclialkylation stratedyto efficiently
assemble the carbocyclic skeletdnHere we report a
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§ Presented at the 233rd National Meeting of the American Chemical
Society, Chicago, IL, March 2007; Paper ORGN #376.
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of the aryl ring and C(7) of the alkyne from ever becoming faciliate the introduction of the C(10) and C(7) asymmetric
spatially close enough to react. Not surprisingly, the cy- centers (Scheme 3). 1,2-Reductiorl6fusing Corey’s CBS
clialkylation of 7 was unsuccessful. In contrast, Lindlar protocol gave alcohol ®)-14in 91% yield and excellent
hydrogenatio#® of the triple bond in7 cleanly gave cy- enantioselectivity The final steps of our (}-salviasperanol
clialkylation precursoB, which upon treatment with excess synthesis benefitted from Simmons and Sarpong’s observa-
TiCl, first formed intermediat®, which subsequently lost  tion® that epoxidel7 isomerizes to dihydrofura@8 under
ethanol to give dienon&0 in 66% isolated yield. acidic conditions. We expected that the C(1) hydroxyl group
would direct the epoxidation to only the C(5), C(X@ouble
bond!® and that the subsequent rearrangement of epoxide
15would produce dihydrofurath6 with the desired config-
uration at C(7) and C(10). Indeed, treatment of diehé|
with m-CPBA in CHCI, at 0°C in the presence of NaHGO

for 1 h furnished only epoxy alcohol R)-15in good yield.
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1,2-Addition of lithium acetylide to keton&, followed NZL | 5 -
by mild acid hydrolysis, produced enynohin 92% yield. N ”\ e .
Stirring 11 with excess BEetherate and a 10% stoichio- ‘@ § =

metric quantity of ethanethiol in Gi&l, at room temperature (20) © Gt <

for 12 h gave dienonel0 in 94% yield. Under these hacac htacac (117
conditions, vinyl sulfidel2 was formed rapidly (<1 h). If s / [%?:tA

an aliquot of the reaction mixture was worked up intermedi- ¥ (78%{&
ate12 could be isolated and characterized; however, longer 10
reaction times permitted the cyclialklyation @P to give ‘ §
the seven-membered ring, and subsequent elimination of 7

ethanethiol from intermediat&3. This two-step sequence (1A)-21 (10575)-18

represents a more efficient way to functionalize the central

carbocyclic ring in comparison with the Aren’s reagent/ gpqyy aicohol (R)-15, however, was acid sensitive preclud-

reduction/and cyclialkylation route. ing its acid-promoted isomerization. This dictated that the
Asymmetric reduction of the C(1) carbonyl would create C(1) hydroxyl group must either be protected or removed

enantiomerically enriched allylic alcoh@4, which would before attempting to rearrange the C(5), C(10) epoxide.
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A. S.J. Am. Chem. So&988 110 2248-2256. (b) Lipshutz, B. H.; Tirado, 2012.
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Instead of using a common protecting group for the C(1)
hydroxyl group, crudel5 was treated with 1,1-thiocar-
bonyldiimidazole to giveD-thiocarbamatd 9 which could
be chromatographed and characterized (Schemg&Ree
radical deoxygenation af9, followed by isomerization of
vinyl epoxidel7 using catalytic trifluoroacetic acid (TFA),
produced salviasperanol dimethyl eth&r but in low overall
yield. The isomerization of vinyl epoxides to dihydrofurans,
via asr-allyl copper intermediate, such 28, is known even
in the presence of ethers and esférslowever, treatment
of vinyl epoxide19 with copperbis-hexafluoroacetylaceto-
nate [Cu(hfacag) only cleaved theD-thiocarbamate.

(16) RajanBabu, T. V.; Fukunaga, T.; Reddy, GJSAm. Chem. Soc.
1989,111, 1759—-1769.
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In contrast,O-thiocarbamatel9 could be rearranged to
21 using trifluoroacetic acid (Scheme %)he removal of
the thiocarbamate moiety was achieved by heating a toluene
solution of (IR)-21, with a catalytic amount of AIBN and
excess tri-n-butyltin hydride at 11 for a 30-min period.
These conditions provided salviasperanol dimethyl etl@er
in 76% yield from epoxidd 9. Treatment o8 with excess
sodium ethanethiolate in hot DMF cleaved the C(11) and
C(12) methyl ethers to furnish-)-salviasperanol3) in 86%
yield. Our synthetic3 displays*H and*C NMR, IR, and
MS spectra identical to those reported for the natural
sample’ The application of this modified cyclialkylation
strategy to synthesize other icetexane natural products is
underway!81°
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